Evaluating Reliability-Testing Usage Models

Bo Wan

The school of EECS
University of Ottawa
Ottawa, Canada
Bwan080@uottawa.ca

Abstract - Testing the reliability of an application usually
requires a good usage model that accurately captures the likely
sequences of inputs that the application will receive from the
environment. Markov usage models and their variations have
been found to be well suited for generating test cases that are
statistically close to what the application is expected to receive
when in production. In this article, we study the specific case of
web applications. We present an evaluation method for
estimating the accuracy of various reliability-testing usage
models. The method is based on comparison between observed
users’ traces and traces inferred from the usage model. Our
method gauges the accuracy of the reliability-testing usage
model by calculating the sum of goodness-of-fit values of each
traces and scaling the result between 0 and 1.

Keywords: Web applications, evaluation,
Reliability testing, Markov chains.

Usage model

1. INTRODUCTION

In the past two decades, the problem of improving
software quality has attracted a lot of research interest. One
quality attribute of importance is software reliability. For a
material system, reliability is usually defined by the expected
time of operation after which the system will fail. In the case
of a software system, it can be defined by the expected
number of usages before it will fail. A usage, in this context,
may be a request provided by the environment, or a complete
usage session, for instance in the case of an application with
an interface to a human user.

Many formal reliability estimation techniques have been
discovered and developed: reliability growth models [1],
operational profile testing [2] and statistical usage testing [3].
Statistical usage testing is used to validate the developed
software based on the intended usage, and provides
reliability measurements as well. However, in practice, the
coverage provided by the test cases cannot be exhaustive.
Thus the purpose of a realistic reliability testing campaign
cannot be to execute every possible test case. In this context,
it is important to test first those behavior patterns that occur
most frequently under normal operating conditions. This idea
has been applied with great success to certain large software
projects: Google was for example able to deliver an internet
browser, Chrome, that was remarkably reliable from its first
release, not necessarily because it was tested against more
web pages than the other browsers, but because it was tested

Gregor v. Bochmann
The school of EECS
University of Ottawa

Ottawa, Canada
bochmann@site.uottawa.ca

Guy-Vincent Jourdan

The school of EECS
University of Ottawa
Ottawa, Canada
gvj@ eecs.uottawa.ca

against the web pages that Google knew people were most
looking at'.

Several usage models proposed in the past two decades
can be applied to simulate the operational environment of the
system under test for reliability estimation. In [4], a
tree-based structure is used to represent the collection of
paths inferred from a log file in order to present the users’
web surfing pattern. First-order Markov chain models are
also widely used in reliability testing [5], [6], [7]. In 2000,
Borges and Levene proposed a new Markov model based on
extracting user navigation patterns by using a Hypertext
Probabilistic Grammar model (HPG) and N-grams [8]. Later,
they presented a new method that uses clustering in a way
that enables the model to represent higher-order conditional
probabilities [9]. More recently, we proposed a hybrid
tree-like Markov usage model. Assuming that most users’
usage sessions start with popular pages, we constructed a
model based on a modified tree that captures the most
frequent behaviors, while adding also a Markov chain that
captures infrequent behaviors [10].

In this paper, we provide a method to measure the
accuracy of a usage model as compared with the users’ real
usage history in order to answer the following questions
encountered in reliability testing: (1) Given several usage
models, which one captures best the users’ operational
profile and should thus be used for reliability estimation, in
order to improve the accuracy of software reliability testing?
(2) If the usage model is parameterized, how can the values
of the parameters be optimized? We focus our discussion
around Web applications. Our method evaluates the accuracy
of a model by taking into account the covariance differences
between the observed transition visiting frequencies and the
model-implied transition visiting frequencies, given all
possible users’ web visiting trails. We store the observe
user’s behavior and the model-implied behavior in two
matrices capturing the probabilities of choosing a given page
as the next page, given the path that was followed to reach
the current page. Clearly, the better the usage model captures
the user’s behaviors, the more similar the two matrices are.
The covariance difference criterion used is chi-square (x?).
We present a way to determine the extent to which the
observed user usage behaviors fit the Markov usage models.
In order to strengthen our experimental results, we use the
k-fold cross validation testing strategy [11].

! See http://www.google.com/googlebooks/chrome/, page 10 for a
graphical illustration.

This paper is structured as follows. Section 2 presents an
overview of Markov usage models and their applications in
reliability testing. Section 3 presents a detailed description of
our proposed method for evaluating the accuracy of Markov
usage models. In Section 4, we detail our experimental
results and discuss a new way to optimize parameter-based
usage models. In Section 5, we give our conclusions and
present our plans for future research.

II. RELIABIILTY-TESTING USAGE MODELS

A conventional definition of software reliability is the
probability that software will not fail in a specified number
of usages in a given operational environment. The
operational environment is characterized by an input
distribution and a description of the data that potentially will
be processed by the software [12]. Such operational
environment can be perfectly described by a usage model
which includes the probability density function that defines
the likelihood that any element in the domain is chosen for
execution; it is the input distribution for running the software.
Several published techniques for estimating the reliability of
a system are developed based on these concepts (such as [12],

[13], [14]).

In 2002, Sayre and Poore applied a first-order Markov
Chain usage model to estimate single-use reliability which
was defined as the probability of the software executing a
randomly selected input without failure [15]. In their usage
model, the states represent modules or functions of the
system under test, and arcs among states represent state
correlations of the user behavior, the states “Invoke” and
“Terminate” denote the start and the end states of the user
behavior. Hence, a use or a test case is an executed sequence
of actions from “Invoke” to “Terminate” generated by a
random walk on the Markov chain usage model. The mean
and the estimated variance of the software reliability are
estimated for the sample generated by simulation of the
usage model. More recently, an industrial tool named
MaTeLo also used Markov chains to model usage profiles, to
generate test cases, and to debug and estimate the software
reliability [6], [7], [16]. In 2011, Sprenkl et al. presented an
empirical study of the generation of test sequences from
higher-order Markov Chain usage model for web
applications testing [17]. The test sequences are generated
from random walks on the usage model, following the
probability distribution of the model transitions. They
compared how using different order Markov Chain impacts
the resulting model size and accuracy and the characteristics
of the generated test sequences. In this paper, we provide a
generalized approach to measure the accuracy of various
Markov usage models.

In Web applications, a first-order Markov model captures
the page-to-page transition probabilities: p(x2/x1) where x1
denotes the current page and x2 denotes one of the next
pages reachable from x1. Such low-order Markov models
cannot capture behavior where the choice of the next page to
be visited depends on “history”, that is, on how the current
application state was reached. An example is shown in

Figure 1: In the snippet of a traditional Markov usage model
(b), we see that there are three ways to reach state 3 (from
state 1, from state 2 and from state S), and that from state 3,
there is 30% chance to go to state 4, and 70% chances to go
the state 5. However, looking at the provided application
state sequences, we can see that users reaching state 3 from
state 1 never go to state 4 afterwards. What is shown in the
first-order Markov chain is misleading. Thus, some test
sequences generated by a first-order Markov chain cannot
represent realistically certain usage patterns of the web
application®. The estimated reliability is inevitably biased by
those misleading test sequences. Since it is reasonable that
most Web applications involve such history-dependent
behavior, accurate models of user behavior cannot be
obtained with first-order Markov chains [Peter]. The same
problem is also discussed by Deshpande and Karypis
[Deshpande].

Figure 1 An example of a first-order Markov Chain model: (a) a collection
of application state sequences and (b) the corresponding first-order Markov
chain model

In the past decades, several published higher-order
Markov usage modeling in data mining and pattern
recognition are also suitable for reliability estimate. An
N-gram navigation model has been explored by Borges and
Levene in 2000 to extract user navigation patterns by using a
Hypertext Probabilistic Grammar model structure (HPG) and
N-grams [8]. In their work, an N-gram captures user
behavior over a subset of N consecutive pages. They assume
that only the N-1 previous pages have a direct effect on the
probability of the next page selected. To capture this, they
reuse the concept of “gram” taken from the domain of
probability language learning [16]. Consider, for example, a
web site composed of six states {Al, A2, A3, A4, A5, A6}.
The observed application state sequences are given in
Table 1 (Nb denotes the number of occurrences of each
sequence).

2 Similar criticisms can of course be made of first-order Markov
models for non Web applications.

TABLE 1. A COLLECTION OF APPLICATION STATE SEQUENCES

Application State Sequences Nb
Al-A2-A3 3
Al-A2-A4 1
A5-A2-A4 3
A5-A2-A6 1

A bigram model is established using first-order
probabilities. That is, the probability of the next choice
depends only on the current position and is given by the
frequency of the bigram divided by the overall frequency of
all bigrams with the same current position. In the example of
Table 1, if we are interested in the probabilities of choices
from application state A2, we have to consider bigrams
(sequences including two application states) that start with
state A2. This includes the following: Segment A2-A3 has a
frequency of 3, and other bigrams with A2 in their current
position include the segments A2-A4 and A2-A6 whose
frequency are 4 and 1, respectively; therefore,
P(A3]A2)=3/(3+4+1)=3/8. It is not difficult to see that the
2-gram model is a first-order Markov chain, the first-order
Markov usage model. The second-order model is obtained by
computing the relative frequencies of all trigrams, and higher
orders can be computed in a similar way. Figure 2 shows the
3-gram model corresponding the sessions in Table 1.

Figure 2. 3-gram model corresponding to the sessions given in Table 1

Subsequently, the same authors showed in 2004 how to
use higher-order Markov models in order to infer web usage
from log files [8]. They propose to duplicate states for which
the first-order probabilities induced by their out-links diverge
significantly ~ from the corresponding second-order
probabilities. Take Table 1 again as example. Consider state
2 and its one-order probability p(A3|A2)=3/8, and its
two-order probability p(A3|A1A2)=3/4. The large difference
between p(A3|A2) and p(A3|A1A2) indicates that coming
from state Al to state A2 is a significant factor on the
decision to visit A3 immediately afterwards. To capture this
significant effect, they split state A2 as illustrated in figure 3.
A user-defined threshold defines how much the first and
second order probabilities must differ to force a state
splitting. A k-means clustering algorithm is used to decide
how to distribute a state’s in-links between the split states.

Figure 3 an example of the cloning operation in dynamic clustering
modeling

More recently, we have presented a new method that can
be used to create an accurate statistical usage model for
reliability testing of web applications from log files [10].
Since for web applications the choice of the next page to be
visited depends on the ‘“history”, the user’s operational
profile in the context of the previous pages visited can be
presented as a conditional probability
p(s;|s1, 52, ..., Si—1)where sy,5,,...,s;; is the visiting trail
of past web pages is. Using the definition of conditional
probability, we see that p(sj|sy, Sz, ...,S;.q) equals

p(sli S2,) Si-1s Si)
p(s1,S2, -+, Si1)

C)

p(silsy, Sz, s S10) =

Using the chain rule, the probability of a visiting trail is
given by:

m
PGt smorsm) =G0 | | pGsilsy, i) ®)
i=

In practice we always keep user visiting sessions as well
as conditional probabilities of visiting sessions in a tree
structure. Let c(sy, S, ..., Si_1,Si) denote the frequency count

of the trail, then the estimate of the conditional probability
by the frequency counts is (6):

C(S1,Sz, «++» Si-1,5i)

C(S1,Sz, «+sSi-1)

(6)

p(Sjlsl, Sp, ey Si—l) =

Although the tree-structured Markov usage model
contains the full user behavior information, it is quite
impractical for the use in reliability estimation, mainly due to
its very large size. Our hybrid tree-like Markov usage model
preserves the strength of the tree-structured Markov usage
model while providing high coverage and good scalability.
The method uses a tree structure to preserve statistically
significant information of the user behavior, as gathered
from the log files. The initially very large tree (shown on a
very small sample on Figure 4.b) is reduced in three steps:
first, frequency pruning removes the branches that are almost
never followed. The pruning is controlled by a parameter,
called “frequency threshold” 6. When the calculated
conditional probability of a branch is lower than the
frequency threshold, the branch is cut. Then, a test known as
the “Cochran criterion” is used to remove states that do not
carry reliable statistical information. This Cochran criterion
states that in order to apply the test of independence, at most
20% of the possible alternatives should have fewer than six
instances in the sample set [18]. To avoid the loss of the
model’s coverage, the states removed during these two steps
are merged into a first-order Markov chain model (called the
“lower Markov chain”) that captures infrequent behaviors.
Following the Cochran criterion, the tree model after
frequency pruning (6 =5%) and Cochran criterion pruning is
illustrated in Figure 4.c.The pruned tree is further reduced

through merging of model states corresponding to the same
application states and on which user behavior is statistically
similar. For example, in Figure 5.a, the model states 1.a and
1.b denote the same application state with different
“histories”. If the users’ behavior is very similar at some
application state even though the trails by which they
reached this application state are different, the model state
should be merged. The judgment of similarity is made by an

independence test. After merging, the resulting “tree”, which
is called the “upper tree”, contains the most frequent
behaviors, which are statistically significant. Figure 4.d
shows the model after merging by independence test with
significance level 0.05. In practice, the resulting hybrid
Markov usage model is drastically smaller than the original
tree of sequences, but still contains all the significant
behavioral and coverage information.

1 table a

n table a

Figure 4 An example of hybrid tree-like Markov usage model

Figure 5 An example of merging two model states

III. MODEL EVALUATION METHOD BASED ON
COVARIANCE ANALYSIS

As reviewed in Section 2, lower-order or higher-order
Markov models can be used to capture software usage
patterns. In other words, they all can be used to simulate the
operational environment of a system for reliability testing.
However, the following question arises: Which model can
best represent the real operational behavior of the users? — Or
in other words: To what extent are the test cases generated
by a usage model similar to the observed user behavior as
documented in the execution sequences recorded in the
application log files? These questions will have to be
answered by the software engineer who wants to select a

usage model that is to be used for estimating the reliability of
the system through reliability testing. Therefore, finding a
statistically significant usage model has a practical and
substantive meaning.

a. Observed data and model-implied data

A good Markov usage model contains the users’ usage
information and accurately captures the probabilities of these
usages. In other words, if we observe the users’ behaviors
under the same conditions, the behavior suggested by the
usage model should not be significantly different from the
behavior observed with real users. For example, Table 2 is a
collection of observed application state sequences from
users’ usage, also called test sample, and the usage model
under test is a first-order Markov usage model (Figure 1.b)
obtained from a training sample (Figure 1.a).

TABLE 2. AN OBSERVED SAMPLE OF APPLICATION STATE SEQUENCES

Application State Sequences Nb

S-1-3-5-T 8
S-3-4-T 2
S-2-3-4-T 3
S-2-3-5-T 9

Our observation sample of Table 2 suggests that users
reaching state 3 after the state sequence s-1-3 always choose

state 5 afterwards, which can be expressed by the conditional
probability p(5|s,1,3) = 1. The observed frequency of
choosing 5 after visiting trail s-1-3 is ¢(5]s, 1,3) = 8. In the
following, we call this the “observed values”. On the other
hand, the usage model implies that the probability of
choosing state 5 with the previous visiting trail s-1-3 is 70%.
Counting from observation sample, the c(s, 1,3) = 8. Thus,
the model indicated frequency of choosing 5 after the
visiting trail s-1-3 is ¢(5]s,1,3) = p(5ls,1,3) *c(s,1,3) =
0.7+8=5.6. In the following, we call this the
“model-implied values”. Due to the significant difference
between the observed and model-implied values, we can say
that the usage model does not capture the user’s behavior
after visiting s-1-3.

Based on this simple example, if we want to evaluate the
whole model’s fitness, we need to analyze the differences
between observed and model-implied values under all
conditions. Assume T = s3,S; ...,S;_1, S; is a trail observed
in the test sample, the model implied frequency value,
c(s;|s1,52, ..., Si—1), is calculated by formula (7), where
Pm(Silsy, ..., Si—1) is the conditional probability from the
model and c(sy,...,S;_1) is the frequency of prefix
subsequence s, ..., s; ;in the test sample.

c(silsy, - Sic1) = Pm(Silsy, s 1) *C(S1, oo, 511) (7)

All observed values and model-implied values are
stored in two: the sample matrix (S) and the expected matrix
(E). For the example of Table 2, the matrices S and E are
shown in the table 3

TABLE 3. AN EXAMPLE OF OBSERVED VALUES AND MODEL IMPLIED VALUES

s s-1 s-2 ... s-2-3
1 8 0 0 0
2 12 0 0 0
3 2 8 12 0
4 0 0 0 3
5 0 0 0 e 9
(a) S-Observed values
S s-1 s-2 ... s-2-3
1 8.8 0 0 e 0
2 8.8 0 0 0
3 4.4 8 12 e 0
4 0 0 0 e 3.6
5 0 0 0 8.4

(b) E-Model-implied values

S[i][j] represents the observed frequency of going to state
i when the prefix j was followed. Similarly, E[i][j] represents
the model-implied frequency of going to state i when the
prefix j is followed. Note that S contains all the information
we can get from the observation sample.

b. Logic of chi-square test

The classic statistical method to evaluate whether a
model fits the observation is through covariance analysis and
the chi-square test. Borges and Levene also used the
chi-square test to estimate the predictive power of

higher-order Markov models [19]. The x?value is given by

)y
pey Y @

A significant x? value relative to the degrees of freedom
indicates that the observed and model-implied matrices differ.
A non-significant x? value indicates that the two matrices
are similar; indicating that the usage model accurately
represents the usage pattern. Whether a x? value is
significant or non-significant is determined by the x?2
distribution and its null hypothesis. If the x? value is larger
thany? given by the corresponding x?distribution and a
certain significant level, we reject the hypothesis, that is, the
model under test does not represent the user’s behavior.
Otherwise, we say the usage model fits the user behavior
represented by the observation sample.

However, in practice the, chi-square test has limitations:

1. Some basic assumptions underlying the chi-square test
may be false and the distribution of the statistics may not
hold when these assumptions are violated [20].

2. A chi-square test offers only a dichotomous decision
strategy implied by a statistical decision rule and cannot be
used to quantify the degree of model fitness along a
continuum [21]

3. The chi-square test of model fitness can lead to
erroneous conclusions. Since the chi-square test is a direct
function of the sample size, the probability of rejecting the
model increases as the sample size increases, even when the
model is minimally false [22].

c. Logic of the Goodness-Of-Fit Index test

George Box said "All models are wrong, but some are
useful" [23]. As we discussed above, the chi-square test may
reject any model when the sample size is large enough. But
some of the rejected models are still quite useful. Our goal
should not be to decide whether the model is "correct”" or
"wrong", but to describe the extent to which the model
captures the data. In particular, we want to be able to know
whether one model fits the data better than another one.

Markov usage models can be used to create a series of
nested models capturing more and more “history”. It starts
with an independent usage model, which does not capture
any correlations between states at all. In this case, the user
behavior as described by a model that does not depend on
any factors, not even the current state. Then, the first-order
Markov usage model introduces the first-order conditional
probabilities: it captures a behavior where the choice of the
next operation depends on the current state Then,
higher-order Markov usage models can capture correlations
between states that are further and further apart in the
“history” leading to a more and more detailed usage pattern.

3 If the model does not expect a sequence contained in the
observed sample, the corresponding entry in the observation matrix
S is a non-zero value, yet the model-expected value is zero. In this
case, we correct x* to (S;; — Ejj)?/1.

Finally, the series of usage models ends with an ideal
Markov usage model which is able to describe exactly the
user behavior and all correlations in the observed usage
behavior. In other words, the ideal Markov usage model fits
all observations. Thus, the difference between the values of
the observation matrix S and the matrix E of the ideal
Markov usage model is 0 in all situations. Consequently, we
can position any possible Markov usage model on a scale
ranging from 0 to 1 representing the so-called
Goodness-of-Fit Index (GFI), where the independent model
is the reference of the worst usage model (GFI = 0) and the
ideal Markov usage model is the best one (GFI = 1). The
equation to find the position of any “proposed” usage model
on this scale is given by (9) [22]

2 2
Xindependent — Xproposed

2 — 2
Xindependent Xideal

GFI =)

where)(izndependent is the chi-square value of the
independent model, xf,mposed denotes the chi-square value

of the proposed model and X%, expresses the chi-square
value of ideal model (thus X2, is always 0 by definition).

We note that the GFI value has no statistical meaning,
therefore it is not easy to provide a meaningful interpretation.
For instance, what does it mean if the GFI value of a model
is 80%? — Experience is required to associate some meaning
the various possible GFI values. Bentler and Bonett claim
that a GFI value of more than 90% indicates the model fits
the observed data well [22]. This shortcoming of the GFI
value comes with an advantage: Since there is no statistical
meaning, we do not have to worry about the basic
assumptions on the statistical distributions (see limitation (1)
at the end of Section III (b)). In particular, we do not have to
worry about the “Cochran criterion” which is often applied
to the chi-square values for usage sequence of low
frequency.

In practice, statistical accuracy is not the only criterion
that is relevant to evaluate a usage model. The model size is
also of importance. In fact, provided that we have access to a
training sample that is large enough, the tree model will have
a GFI of 1. However, this model cannot really be used
because of its very large size. Therefore, in our model
evaluation, in order to chose a model for reliability testing,
we would tend to select a model that has fewer states among
the ones that have a good enough GFI (say above 90%).

IV. EXPERIMENT

a Goodness-of-fit Index

We conducted experiments with a real data set from a
web site called Bigenet (http://www.bigenet.org). Bigenet is
a genealogy web site allowing access to numerous registers —
birth, baptism, marriages, death and burials — in France. The
data set is organized as a list of visiting sessions from the
access log files of the web server and the functional model of
the application. We had at our disposal the access log files
for the period from September 2009 to September 2010.

Table 4 presents a summary of the characteristics of the
visiting sessions during this period.

TABLE 4. SUMMARY STATISTIC FOR THE DATA SET FROM BIGENET

Characteristics Bigenet
Num. of Application States 30
Num. of Request 638546
Num. of Sessions 88666
Num. of Application State Sequences 27107
Ave. Session length 7.20
Max. Session length 199

In order to avoid the estimate bias, we used k-fold cross
validation: we split the whole sample S into k sub-samples
S, -, Sk of approximately equal size. The usage model is
trained and tested k times. For each t € {1, ..., k}, we use all
sub-samples except s; to train model, then use s; to test the
model. In this experiment, we split our sample set S of 88666
visiting sessions into three randomly selected sub-samples
(folds). This insures that the usage model is trained and
tested with large enough data sets. Thus, each usage model is
trained and tested three times, and the GFI reported in Table
5 is the average.

We tested four different usage models. For each one, we
report the GFI value as well as the number of states in Table
1.

TABLE 5. SUMMARY RESULT OF THE GOODNESS-OF-FIT INDEX TEST FOR
FOUR DIFFERENT USAGE MODELS

Goodness-of-fit Model
index size
First-order MCUM 72.84% 32
Hybrid tree-like MUM 88.69% 950
Optimized hybrid tree-like MUM 91.98% 898
Tree model 98.69% 225066

The four models shown in Table 5 are the following. (1)
The first-order Markov chain usage model, (2) the “hybrid
tree-like Markov usage model” presented in [10] with a
frequency pruning threshold of 5%, (3) an “optimized hybrid
tree-like Markov usage model” where a branch is pruned
when there are less than 25 observations for it (instead of
having less than 5% of the alternatives), and (4) the tree
model containing all branches of the training sample. We
note that the first-order Markov chain usage model has a
relatively low GFI. Thus, it is not very suitable to simulate
software’s operational environment of reliability testing.
Although the hybrid tree-like Markov usage model has a
much better GFI, it is still below 90%, which shows that it
could be improved. Tracing the issue, we found that using a
percentage to prune the low-frequency branches in the tree
may lead to over-pruning. Since the hybrid tree-like Markov
usage model is a parameter-based model, we were able to
optimize the pruning parameter (in this case by setting it to a
count of 25) to achieve high accuracy while maintaining a
small model size.

As shown in Table 5, we note that the accuracy of the
optimized hybrid tree-like Markov usage model has an
improved GFI value (91.98% instead of 88.69%) while the
model size is reduced by more than 50 states. The GFI value
of the tree model is nearly 100%. The difference of 1.31%

results from the difference between the training sample and
testing samples. This difference decreases as the sizes of the
training and testing samples increase. In this case, the tree
model, which approaches the ideal model, has an GFI value
that is 6.71% better than the optimized hybrid tree-like
Markov chain usage model, however, the size of this model
is much larger (by a factor 250).

b Comparing the Generated Test Sequences

The goal of our evaluation of reliability-testing usage
model is of course to be able to select a model from which
we can generate test sequences that fit user’s behavior well,
and that is not too large. In order to see visually how well the
test sequences generate from the model fit, we selected the
first-order MCUM and the Optimized hybrid tree-like MUM
models and used a random walk on the model to produce
sample sequences.

mTwme

Reference Sequence set

Generated Test Sequence Set
from Hybrid Tree-like MCUM

Generated Test Sequence
Set from first-order MCUM

In this experiment, we randomly selected 29,546 sessions
out of the 88,666 to train our models. We used another
29,546 sessions from the remaining set as reference, and
generated 29,546 sessions from both models. We sorted the
sequences using radix-sort to have a consistent and regular
ordering of the sequences in all three sets. We then map the
sorted sequence sets to the images (shown in Figure 6) by
assigning colors to different application states. Figure 6
shows the difference between the three sets, where white
place means empty.

As explained in Section IV a., the GFI of first-order
MCUM is 72.84%, while the GFI Optimized hybrid tree-like
MUM is 91.98%. As expected, the graph obtained from the
sequences of Optimized hybrid tree-like MUM (middle)
closely matches the graph obtained from the reference set
(top), while the graph obtained from the sequences of
first-order MCUM (bottom) is much more different. This
provides a visual confirmation of our results.

L0 U s il

i LA

T T

Figure 6 Generated Test Sequences Sets from different usage Models

¢ Selecting Best Model Parameters

In parameter-based usage models, using different
parameters with the same training rules leads to different
models. In this section we use our hybrid tree-like Markov
usage model to illustrate how the Goodness-of-Fit Index can
be used to optimize parameter-based usage models. As
explained in Section II, the hybrid tree-like Markov usage

model has parameters (frequency-pruning and Cochran
criterion) that can lead to a usage model that has a very much
reduced “upper tree” and injects more information into the
“lower Markov model”. Therefore, the frequency-pruning
thresholds play a crucial role for model accuracy and size. In
our previous paper, we introduced these parameters but did
not discuss how to set them.

The elimination of low-frequency branches in the upper
tree can be done via two parameters: the percentage
threshold 6 and the count threshold c. When the conditional
probability of a branch is lower than 6 and/or the frequency
of a branch is lower than ¢, the branch is cut.

TABLE 6. THE TRENDS OF MODEL SIZE AND MODEL ACCUARCY WITH
DIFFERENT PARAMETERS

(a) GFI matrix

6\c | N/A 500 200 100 50 25 0

N/A | 72.84 | 87.96 | 89.87 | 90.84 | 91.47 | 91.98 | 92.73
0.20 | 83.14 | 9096 | 91.42 | 91.94 | 92.23 | 92.41 | 92.73
0.15 | 87.72 | 91.13 | 91.58 | 92.04 | 92.31 | 92.46 | 92.73
0.10 | 87.98 | 91.48 91.9 | 92.17 | 92.36 92.5 | 92.73
0.05 | 88.69 | 91.82 | 92.21 | 92.36 | 92.48 | 92.57 | 92.73
0.00 | 92.73 | 92.73 | 92.73 | 92.73 | 92.73 | 92.73 | 92.73

(b) Model size matrix

6\c | max [500 200 100 50 25 0

1.00 32 87 160 278 485 898 | 2051
0.20 191 756 980 | 1201 | 1406 | 1694 | 2051
0.15 520 917 | 1123 | 1360 | 1537 | 1769 | 2051
0.10 589 | 1121 | 1331 | 1532 | 1677 | 1835 | 2051
0.05 944 | 1416 | 1633 | 1738 | 1824 | 1927 | 2051
0.00 | 2051 | 2051 | 2051 | 2051 | 2051 | 2051 | 2051

Table 6 shows the how model accuracy (a) and the model
size (b) change with different parameters values. The rows
show how these values evolve with ¢ for a fixed 8 and the
lines show the other way around. Each branch is pruned if its
conditional probability is lower than 6 and the branch
frequency is lower than c. The matrices show us that with 0
and C decreasing, the accuracy of the model increases but so
does its size. One can then choose parameters that yield a
good enough accuracy (usually above 90%) with an
acceptable model size.

V. CONCLUSION

In this paper, we have presented a method to assess the
accuracy of various Markov usage models. The goal is to
help test designer to select a practical usage model for web
application reliability testing. The method uses the
chi-square value to measure the distance between the
probability distributions of predicted by the usage model and
the probabilities observed in a testing sample. We use the
Goodness-of-Fit Index (GFI) to position the proposed model
on a scale ranging from a worst usage model to an ideal
model that fits all observations. We can position any Markov
usage models on this scale to reflect its relative accuracy.
Therefore, testers can now compare different Markov usage
models and selected the one that yields an acceptable
accuracy and has an acceptable size. It is also possible to use
this approach to optimize the values of model parameters in
order to find the best usage model instance.

In contrast to some empirical studies on the same
question (such as [17]), we provide a statistical view of
model fitness and accuracy that can be applied to all Markov
usage models. Compared with previous studies based on
classical chi-square tests to estimate the model’s accuracy
(such as [19]), our method overcomes the following two

weaknesses. First, the result of a chi-square test depends on
the test sample size. When the test sample size is small, the
chi-square test tends to accept the hypothesis that the model
accurately captures the user’s behavior. On the other hand,
when the test sample is large, the chi-square test tends to
reject the hypothesis. Our method reduces this impact of the
sample size. Second, the chi-square test is a dichotomous
decision based on the chi-square distribution relative to the
degrees of freedom; it determines the confidence that the
model accurately represents the behavior of the testing
sample. The Goodness-of-Fit Index positions the accuracies
of a model within a continuous closed interval which makes
it easy to compare the accuracy of different usage models.
Thus, it is easy to determine the best model or most suitable
model for the simulation of the operational environment in
reliability testing.

REFERENCES

[1] IEEE Reliability Society, “IEEE Recommended Practice on Software
Reliability”, IEEE Std 1633-2008, New York, 27 June 2008.

[2] J.D.Musa, “Operational profiles in software-reliability engineering”,
IEEE Software, 10(2):14-32, Mar. 1993.

[3] R.C.Cheung, “A user-oriented software reliability model”, IEEE
transactions on software Engineering, SE-12(1):118-125, Mar. 1980.

[4] S .Schechter , M. Krishnan and M.Smith, “Using path profiles to predict
HTTP requests”. Comput Netw ISDN Syst 30:457-467, 1998

[5] J.A.Whittaker and M.G.Thomason, “A Markov Chain Model for
Statistical Software Testing,” IEEE Trans. Software Eng., Vol. 20, No.
10, pp.812-824. 1994

[6] H.Le Guen, R.Marie and T.Thelin, “Reliability Estimation for
Statistical Usage Testing using Markov Chains”. In ISSRE '04:
Proceedings of the 15th International Symposium on Software
Reliability Engineering, pages 54-65, Washington, DC, USA. IEEE
Computer Society, 2004.

[7] W.Dulz and F.Zhen, “MaTeLo—statistical usage testing by annotated
sequence diagrams, Markov chains, and TTCN-3”, In Proceedings of
Third International Conference On Quality Software (QSIC’03), IEEE,
2003.

[8] J.Borges and M.Levene, "Data Mining of User Navigation Patterns"
WEBKDD'00, pp. 92-112, 2000

[9] J.Borges and M.Levene: “A dynamic clustering-based Markov model
for web usage mining”. In CoRR: the computing research repository.
cs.IR/0406032, 2004.

[10] G.Bochmann, G-V.Jourdan and B,Wan. “Improved Usage Model for
Web Application Reliability Testing”, The 23rd IFIP Int. conference
on Testing Software and Systems (ICTSS'11), 2011.

[11] R.Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection, International Joint Conference on
Artifical Intelligence”, (IJCAI), 1994.

[12] K.W.Miller, et. al., “Estimating the Probability of Failure When
Testing Reveals No Failures”, IEEE Transactions on Software
Engineering, Vol 18, pp 33-42. 1992.

[13] T.A.Thayer, M.Lipow, and E.C.Nelson, “Software Reliability” (TRW
Series of Software Techn., Vol. 2). New Yourk: North-Holland, 1978

[14] J. Neyman, “Outline of a theory of statistical estimation based on the
classical theory of probability,” Phil. Trans. Roy. Soc., London A., vol.
236, p. 333, 1937.

[15] K.Sayre and J.Poore, “A Reliability Estimator for Model Based
Software Testing”, 13th Int” 1 Symp. Software Reliability Engineering,
pp. 53-63, 2002.

[16] A.Feliachi and H.Le Guen, “Generating transition probabilities for
automatic model-based test generation”, Third International

Conference on Software Testing, Verification and Validation, pp.
99-102, 2010

[17] S.Spernkle, L.Pollock and L.Simko, "A study of Usage-Based
Navigation Models and Generated Abstract Test Cases for Web
Application”, Fourth International Conference on Software Testing,
Verification and Validation, 2011

[18] R.E.Walpole and R.H.Myers, “Probability and Statistics for Engineers
and Scientists”, Fifth Edition, published byMacmillan publishing
company (1993)

[19] J.Borges and M.Levene: “Testing the predictive power of variable
history web usage”. Soft Comput 11:717-727, 2007.

[20] P.M.Bentler, “Comparative fit indexes in structural models.” Psychol
Bull. 1990 Mar;107(2):238-46.

[21] L.Hu, & P.M.Bentler, “Evaluating mode fit”. In R. H. Hoyle (Ed.),
Structural equation modeling: Concepts,issues and applications (pp.
76-99). Thousand Oaks, CA: Sage 1995.

[22] P.M.Bentler and D.G.Bonett, “Significance Tests and Goodness of Fit
in the Analysis of Covariance Structures” Psychological Bulletin 1980
Vol. 88, No. 3 588-606.

[23] George E. P. Box “Empirical Model-Building and Response Surfaces”,
co-authored with Norman R. Draper, p. 424, ISBN 0471810339, 1987.

